Fast Algorithm for Non-Stationary Gaussian Process Prediction

نویسندگان

  • Yulai Zhang
  • Guiming Luo
چکیده

The FNSGP algorithm for Gaussian process model is proposed in this paper. It reduces the time cost to accelerate the task of non-stationary time series prediction without loss of accuracy. Some experiments are verified on the real world power load data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

AMachine Learning Approach to the Prediction of Tidal Currents

We propose the use of techniques from Machine Learning for the prediction of tidal currents. The classical methodology of harmonic analysis is widely used in the prediction of tidal currents and computer algorithms based on the method have been used for decades for the purpose. The approach determines parameters by minimizing the difference between the raw data and model output using the least ...

متن کامل

Numerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process

In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...

متن کامل

Estimation and prediction of a class of convolution-based spatial nonstationary models for large spatial data

In this paper we address two issues common to the analysis of large spatial datasets. One is the modeling of non-stationarity, and the other is the computational challenges in doing likelihood based estimation and kriging prediction. We model the spatial process as a convolution of independent Gaussian processes, with the spatially varying kernel function given by the modified Bessel functions....

متن کامل

Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields

In this paper, a new class of Gaussian processes is proposed for resource-constrained mobile sensor networks. Such a Gaussian process builds on a GMRFwith respect to a proximity graph over a surveillance region. The main advantages of using this class of Gaussian processes over standard Gaussian processes defined by mean and covariance functions are its numerical efficiency and scalability due ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014